驱动 10月23日 作业
通过字符设备驱动的分步实现编写LED驱动,另外实现设备文件和设备的绑定

test.c
#include
#include
#include
#include
#include
#include
#include
#include
#include "head.h"
int main(int argc, char const *argv[])
{
char buf[128];
int a;
char b[10];
//char str[100] = "/dev/mycdev0";
// printf("0(led1) 1(led2) 2(led3)\n");
while (1)
{
strcpy(buf, "/dev/mychrdev");
printf("0(led1) 1(led2) 2(led3)\n");
scanf("%s", b);
strcat(buf, b);
//printf("%s\n", str);
int fd = open(buf, O_RDWR);
printf("%d\n", fd);
if (fd < 0)
{
printf("打开设备文件失败\n");
exit(-1);
}
printf("打开设备文件成功\n");
//从终端读取
printf("请输入要实现的功能\n");
printf("0(关灯)1(开灯)\n");
printf("请输入> ");
scanf("%d", &a);
switch (a)
{
case 1:
ioctl(fd, LED_ON);
break;
case 0:
ioctl(fd, LED_OFF);
break;
}
//write(fd, buf, sizeof(buf));//将数据传递给内核
// memset(buf, 0, sizeof(buf));//清空数组
// read(fd, buf, sizeof(buf));//将内核空间数据传递到用户
// printf("buf:%s\n", buf);
close(fd);
bzero(buf, sizeof(buf));
}
return 0;
}
mycdev.c
#include
#include
#include
#include
#include
#include
#include
#include
#include "head.h"
struct cdev *cdev;
unsigned int major = 0;
unsigned int minor = 0;
struct class *cls;
dev_t devno;
struct device *dev;
// 定义三个灯指针指向映射后的虚拟内存
gpio_t *vir_led1;
gpio_t *vir_led2;
gpio_t *vir_led3;
unsigned int *vir_rcc;
// 封装操作方法
int mycdev_open(struct inode *inode, struct file *file)
{
int min = MINOR(inode->i_rdev); //获取打开的文件的次设备号
file->private_data = (void *)min;
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
long mycdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int min = (int)file->private_data; //获取到文件的次设备号
switch (min)
{
case 0: //操作LED1
switch (cmd)
{
case LED_ON: //开灯
vir_led1->ODR |= (0x1 << 10);
break;
case LED_OFF: //关灯
vir_led1->ODR &= (~(0x1 << 10));
break;
}
break;
case 1: //操作LED2
switch (cmd)
{
case LED_ON: //开灯
vir_led2->ODR |= (0x1 << 10);
break;
case LED_OFF: //关灯
vir_led2->ODR &= (~(0x1 << 10));
break;
}
break;
case 2: //操作LED3
switch (cmd)
{
case LED_ON: //开灯
vir_led3->ODR |= (0x1 << 8);
break;
case LED_OFF: //关灯
vir_led3->ODR &= (~(0x1 << 8));
break;
}
break;
}
return 0;
}
int mycdev_close(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
// 定义操作方法结构体对象
struct file_operations fops = {
.open = mycdev_open,
.read = mycdev_read,
.write = mycdev_write,
.unlocked_ioctl = mycdev_ioctl,
.release = mycdev_close,
};
int all_led_init(void)
{
// 进行寄存器的地址映射
vir_led1 = ioremap(PHY_LED1_ADDR, sizeof(gpio_t));
if (vir_led1 == NULL)
{
printk("物理内存地址映射失败 %d\n", __LINE__);
return -ENOMEM;
}
vir_led2 = ioremap(PHY_LED2_ADDR, sizeof(gpio_t));
if (vir_led1 == NULL)
{
printk("物理内存地址映射失败 %d\n", __LINE__);
return -ENOMEM;
}
vir_led3 = ioremap(PHY_LED3_ADDR, sizeof(gpio_t));
if (vir_led1 == NULL)
{
printk("物理内存地址映射失败 %d\n", __LINE__);
return -ENOMEM;
}
vir_rcc = ioremap(PHY_RCC_ADDR, 4);
if (vir_rcc == NULL)
{
printk("物理内存地址映射失败 %d\n", __LINE__);
return -ENOMEM;
}
printk("物理地址映射成功\n");
(*vir_rcc) |= (0x3 << 4); // GPIOE、F控制器时钟使能
// LED1寄存器初始化
vir_led1->MODER &= (~(0x3 << 20)); // MODER[21:20] -> 20
vir_led1->MODER |= (0x1 << 20); // MODER[21:20] -> 01
vir_led1->ODR &= (~(0x1 << 10)); // 默认关灯
// LED2寄存器初始化
vir_led2->MODER &= (~(0x3 << 20)); // MODER[21:20] -> 20
vir_led2->MODER |= (0x1 << 20); // MODER[21:20] -> 01
vir_led2->ODR &= (~(0x1 << 10)); // 默认关灯
// LED3寄存器初始化
vir_led3->MODER &= (~(0x3 << 16)); // MODER[21:20] -> 20
vir_led3->MODER |= (0x1 << 16); // MODER[21:20] -> 01
vir_led3->ODR &= (~(0x1 << 8)); // 默认关灯
printk("寄存器初始化成功\n");
return 0;
}
// 入口函数,安装内核模块时执行
static int __init mycdev_init(void)
{
int ret, i;
//1.申请一个对象空间cdev_alloc
cdev = cdev_alloc();
if (cdev == NULL)
{
printk("申请字符设备驱动对象失败 %d \n", __LINE__);
ret = -EFAULT;
goto out1;
}
printk("字符设备驱动对象申请成功\n");
//2.初始化对象cdev_init
cdev_init(cdev, &fops);
//3.申请设备号 register_chrdev_region()/alloc_chrdev_region()
if (major == 0) //动态申请
{
ret = alloc_chrdev_region(&devno, minor, 3, "mychrdev");
if (ret)
{
printk("动态申请设备号失败 %d\n", __LINE__);
goto out2;
}
major = MAJOR(devno); //根据设备号获取主设备号
minor = MINOR(devno); //根据设备号获取次设备号
}
else
{
ret = register_chrdev_region(MKDEV(major, minor), 3, "mychrdev");
if (ret)
{
printk("静态指定设备号失败\n");
goto out2;
}
}
printk("设备号申请成功\n");
//4.注册驱动对象 cdev_add
ret = cdev_add(cdev, MKDEV(major, minor), 3);
if (ret != 0)
{
printk("注册字符设备驱动对象失败 %d\n", __LINE__);
goto out3;
}
printk("注册字符设备驱动对象成功\n");
//5.向上提交目录 class_create
cls = class_create(THIS_MODULE, "mychrdev");
if (IS_ERR(cls))
{
printk("向上提交目录失败 %d\n", __LINE__);
goto out4;
}
printk("向上提交目录成功\n");
//6.向上提交设备节点信息 device_create
for (i = 0; i < 3; i++)
{
dev = device_create(cls, NULL, MKDEV(major, i), NULL, "mychrdev%d", i);
if (IS_ERR(dev))
{
printk("向上提交设备节点失败 %d\n", __LINE__);
goto out5;
}
}
printk("向上提交设备节点成功\n");
all_led_init();
return 0;
out5:
//将提交成功的节点信息释放
for(--i; i >= 0; i--)
{
device_destroy(cls, MKDEV(major, i));
}
//销毁目录
class_destroy(cls);
out4:
cdev_del(cdev);
out3:
unregister_chrdev_region(MKDEV(major, minor), 3);
out2:
kfree(cdev);
out1:
return ret;
}
// 出口函数,卸载内核模块时执行
static void __exit mycdev_exit(void)
{
//取消地址映射
iounmap(vir_led1);
iounmap(vir_led2);
iounmap(vir_rcc);
//1.销毁设备节点信息
int i;
for (i = 0; i < 3; i++)
{
device_destroy(cls, MKDEV(major, i));
}
//2.销毁目录
class_destroy(cls);
//3.注销字符设备驱动对象
cdev_del(cdev);
//4.释放设备号
unregister_chrdev_region(MKDEV(major, minor), 3);
//5.释放申请到的字符设备驱动对象空间
kfree(cdev);
}
// 用于声明入口函数
module_init(mycdev_init);
// 用于声明出口函数
module_exit(mycdev_exit);
// 声明当前内核模块遵循GPL协议
MODULE_LICENSE("GPL");
本文地址: http://www.wangzhanbaike.cn/article/62d540979722529fb024.html